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A Monte Carlo method is proposed for evaluating integrals arising in molecular 
transport property calculations. The method, which couples the variance-reducing 
technique of importance sampling with specific features of the integral, allows com- 
putation of the complete temperature dependence of the integral in a straightforward and 
efficient fashion. The value of the method is verified by detailed numerical calculation of 
a one-dimensional and a multidimensional example. 

1. DESCRIPTION OF THE TECHNIQUE 

Thermal equilibrium in a monatomic or polyatomic gas is described by the 
well-known Boltzmann distribution function. For a monatomic gas this distribution 
function is simply the Maxwellian function of the velocity components along the 
three Cartesian coordinate axes. For a polyatomic gas this distribution function 
is a product of the Maxwellian function for a monatomic gas and another distribu- 
tion function depending upon internal coordinates of the molecule. 

There exists an important class of multidimensional integrals, encountered in 
kinetic theory (transport property calculations) and chemical kinetics, which 
reduce to the average with respect to the Boltzmann distributionf of a property Q 
for the gas. These integrals are carried out over the phase space 7 of velocity 
components and the internal coordinates and momenta of the molecule. The 
integrals have the form [l] 

Q = j QfdT, (1) 7 

where Q is the average of property Q. 
In general, the multidimensional integrals are impossible to evaluate analytically. 
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Standard numerical quadrature techniques for one-dimensional integrals, when 
applied to multidimensional integrals of large dimension, are found to be very 
inefficient. Therefore, to an increasing extent these integrals are being evaluated 
by Monte Carlo techniques. 

The idea of the Monte Carlo technique is to select “at random” many trials 
or sets of values of the integration variables in the phase space 7. For each set of 
values the property Q is evaluated, and a sum of the evaluations is used to approxi- 
mate Q. 

The central problem in any Monte Carlo calculation is the determination of an 
algorithm which will require a minimal time to calculate a reliable result. Such a 
scheme is termed efficient. The usual method for increasing the efficiency of a 
calculation is through the utilization of variance-reducing techniques [2, 31. The 
variance is a measure of the accuracy of a particular scheme after a given number 
of trials. 

Importance sampling is one of the well-known techniques for reducing the 
variance during a Monte Carlo calculation [2, 31. The random values of the 
integration variables are selected preferentially in the regions of the phase space 
where the integrand is largest in magnitude; that is, the sampling of the random 
values is done preferentially in important regions as determined by the integrand. 
This technique, as all of the variance-reducing techniques, utilizes knowledge of 
the behavior of the integrand to make the Monte Carlo calculation more efficient. 

Frequently the property Q can only be evaluated numerically, e.g., through 
integration of the equations of motion describing a binary collision between 
molecules. When such a calculation is the most time-consuming aspect of the 
numerical integration procedure, it is highly desirable to minimize the number of 
numerical evaluations of the property required. 

The Boltzmann distribution f, and therefore the complete integral Q appearing 
in Eq. (l), depends upon the temperature T. Usually the value of the integral g 
is desired for more than one temperature, and often the complete functional 
dependence upon temperature is desired. In this paper a technique is described 
which allows one, in principle, to compute by the Monte Carlo method the 
temperature dependence of integrals of the form given in Eq. (1) in a straight- 
forward and efficient fashion. The method couples the variance-reducing technique 
of importance sampling with the features of integral (1) that (i) The temperature 
dependence of the integral arises only through the Boltzmann distribution f, and 
(ii) evaluation of property Q is a quite time-consuming calculation. 

A probability density function is selected which is independent of temperature 
and which copies the gross behavior of the integrand. From this density function 
one set of trials is selected, and a corresponding set of values for the property Q 
is computed. For each temperature, then, a differently weighted sum of these 
values of Q is calculated to give an estimate for the average Q. In this fashion 
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the time required to compute the complete temperature dependence of Q can be 
made quite comparable in principle to the time required for computation of Q 
for only one temperature. 

A one-dimensional integral is examined in detail in the next section, and, for 
this example, the usefulness of the technique is verified by numerical calculation. 
In Section 3 the technique is applied to a multidimensional integral and some 
computed results are presented. The computational time required to calculate the 
temperature dependence of the integral by this scheme is indeed found to be 
comparable to the time required for the computation of the integral for only 
one temperature. A brief summary of the conclusions is given at the end of the 
paper. 

2. ONE-DIMENSIONAL INTEGRAL EXAMPLE 

As an example of this technique a one-dimensional integral of interest in chemical 
kinetics will be considered. This integral describes the thermal average of the 
probability for a diatomic molecule, originally in the lowest (ground) quantum 
vibrational state, to make a transition to another quantum vibrational state upon 
collision with an atom. The model chosen for this interaction has been highly 
idealized. The diatomic molecule has been taken to be a quantum mechanical 
harmonic oscillator. Only collisions for which the atom strikes the molecule along 
the line determined by the axis of the diatomic molecule are considered. 

For such a colinear collision of an atom A with a molecule B-C, initially in its 
ground vibrational state, Ref. [4] gives as the probability for excitation to the 
n-th vibrational state 

where 

V = relative translational velocity of the atom and molecule, 

2 
’ 

w = oscillator radial frequency, 

~1 = oscillator reduced mass = mB% 

mB f mC ’ 

fi = system reduced mass = mA(mB + mC) 

mA f mB + mC ’ 

L = exponential range of atom-molecule potential. 
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The probability averaged over a one-dimensional Maxwellian distribution of 
relative translational velocities at temperature T can be expressed as 

In order to calculate this integral by Monte Carlo methods a probability density 
function g, from which values of V are chosen to evaluate the integrand, must be 
selected. It is essential to the technique of this paper to choose a density which is 
independent of the temperature T. The functional form of g with respect to V 
in this case is selected on the basis of physically motivated considerations. The 
probability density function is chosen to be a Maxwellian distribution in V at a 
“fictitious temperature” 6, this parameter being introduced to increase the 
flexibility of the scheme, 

g(V; 8) = -& Vexp [- g]. (4 

Note that other functional forms for the probability density function could 
have been chosen as well, and perhaps some of these density functions would be 
more efficient for computation of integral (2). However, density function (4) has 
the advantage of being physically understandable, a Maxwellian function at 
temperature 9, and of easy generalization to multi-dimensional integrals. 

According to the variance-reducing technique of importance sampling, divide 
and multiply the integrand in (3) by g( V, 6). Then introduce the dimensionless 
velocity 

v= --E- v. 
k9 

Eq. (3) becomes 

where 

PO,(T) = jm F(v, T; 8) G(v) dv, 
0 

G(v) = v exp(-S/2). 

(6) 

The nondimensionalized velocities vi , distributed according to the density 
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function G(u), can be obtained from random numbers Yi distributed uniformly 
between 0 and 1, 

or 
I 

vi 
G(v) dv = Yi 

0 

ui = [-2 ln(1 - Yi)]llz. (7) 

After N trials (i.e., after the selection of N random numbers vi and the corre- 
sponding calculation of F(vi , T, 6)), an estimate PA:‘(T) of the integral can be 
made, 

P;;)(T) = ; .g F(Q) T; 8). 
2=1 

(8) 

Similarly an estimate uTNj of the variance cr2 for the distribution of F(v, , T, 8) 
can be made after N trials, 

(9) 

The estimate Z&, of the variance for the distribution of Pi:“(T) can then be 
made (Ref. [2]), 

In terms of the calculation of the integral (3) therefore, one can say that the 
estimate Pi:‘(T) for the integral PO,(T) is within the range PO,(T) - 32;,, < 
PA:‘(T) < PO,(T) + 3&, with probability 0.997. 

Estimates of the integral in Eq. (3) were performed according to Eq. (8) for 
IZ = 1. In addition, estimates of the variance in Eq. (9) were calculated simul- 
taneously with &j:‘(T). The temperature T, the parameter 9, and the number of 
trials N are all variables in these calculations. Each of these parameters was varied 
independently to determine its effect upon both the efficiency and the sensitivity 
of the results. 

Calculations were performed using molecular constants appropriate for collisions 
between oxygen molecules (0,) and argon atoms (Ar). For this system, the model 
from which Eq. (2) is derived is of interest over a temperature range of approxi- 
mately 300 < T < 10,OOO”K. Calculations (cf. Table I) were carried out over 
this range. 

Several conclusions about the scheme can be drawn from these calculations. 
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TABLE I 

Comparison of the values of the integral P,,(T) in Eq. (3) calculated by the MonteCarlo technique 
and by Gauss-Laguerre quadrature. 

T(“K) 

Pi:‘(T) 
Monte Carlo Pm(T) 

N = 1000, 8 = 10,000 Gauss-Laguerre B(N,(T) 

300 2.45 x 1O-9 2.54 x 1O-9 
500 1.25 x lo-’ 1.23 x lo-’ 
700 1.15 x 10-6 1.17 x 10-G 

1000 9.51 x 10-G 9.94 x 10-S 
3000 1.88 x 10-S 1.87 x lOmy 
5tnxl 1.10 x 10-Z 1.06 x 1O-2 

10000 5.07 x 10-Z 5.04 x 10-a 

0.153 x IO-9 
0.0650 x 1O-7 
0.0525 x 1O-6 

0.383 x 1O-6 
0.0692 x 10m3 
0.0485 x 1O-2 

0.301 x 10-Z 

6.25 x 1O-2 
5.20 x lo-% 
4.56 x 1O-2 
4.04 x 10-Z 
3.68 x 10m2 
4.41 x 10-t 
5.94 x 10-a 

The major conclusion is that for fixed N and 9, P,,,(T) can be estimated fairly 
accurately over the entire range of values of temperature for one set of trials. This 
conclusion is illustrated in Table I. Here are listed the Monte Carlo approximation 
Pi?‘(T) after N = 1000 trials and the exact value for P,,(T) for seven values of 
temperature spanning the range 300 < T < 10,OOO”K. The parameter 6 has been 
chosen to be 10,000”K. The property pol( V) has been evaluated only 1000 times 
(corresponding to the 1000 random velocities selected). Each of the estimates 
Pi?‘(T) was made by summing differently weighted averages, depending upon 
the temperature T, of these evaluations according to Eq. (8). 

The exact value of P,,,(T) at each temperature was determined by 6- and 7-point 
Gauss-Laguerre quadrature, and was adjudged to be accurate to within one per 
cent. To get accuracy within a few per cent by this Monte Carlo scheme, as shown 
in Table I, 1000 trials were necessary. Therefore, the Monte Carlo technique is 
much less efficient for one-dimensional integrals than standard quadrature tech- 
niques, particularly those of the Gauss-quadrature type. For multi-dimensional 
integrals the relative efficiency of the Monte Carlo technique improves significantly. 

The variance Z&T) calculated for each temperature is also shown in Table I. 
It provides an estimate of the accuracy of the Monte Carlo estimate of the integral 
at each temperature. For each calculation shown in Table I, where the correct 
value of the integral is known, the estimate is within &2&&T) of the exact value 
P,-,,(T). (The probability that the estimated value of the integral will be within 
&2L’&T) of the exact value is 95.4 %.) 

In a Monte Carlo calculation for which the exact value of the integral is not 
known, the variance would be used to estimate the accuracy of the computed 
approximation to the integral. For the purpose of comparing the accuracy at 
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different temperatures, the relative error &,,,(T)/Pif’(T), listed in the last column 
of Table I, is a better indicator. This relative error is seen to be less than seven 
per cent over the entire temperature range. It is found to yield a minimum at the 
intermediate temperature of 3000°K for the calculations shown. 

A second conclusion which arises from these calculations is that the convergence, 
for fixed 6 and for an individual value of T, as a function of N is not found to be 
rapid. The reason for this relatively slow convergence can be understood as follows. 
Generally, the variance-reducing technique of importance sampling improves the 
convergence of the Monte Carlo estimate as the probability density function 
more closely mimics the behavior of the integrand. A density function selected 
to imitate the integrand moderately well over a large range of temperatures will 
not be expected to produce an estimate which converges rapidly for any single 
temperature. In effect, the very important and valuable conclusion that the Monte 
Carlo estimates converge over the entire range of temperature is obtained at the 
expense of rapid convergence at any single temperature. 

Figures 1 and 2 illustrate this conclusion. Figure 1 shows two estimates (case 1 
and case 2) of the integral (3) as functions of N for 8 = 10,OOO”K and T = 1000°K. 

1.5x10-5 

2 
0 EXACT VALUE 
8 
z 1.ox1o-5 

o.5x1o-5; ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ 200 400 600 800 1000 

FIG. 1. Monte Carlo estimates P,, w of integral (3) as a function of the number N of trials 
for a temperature T of 1000°K and for parameter 6 = 10,OOO”K. Case 1 and Case 2 are estimates 
calculated from separate sets of random values selected for the integration variable. 

Each estimate is made in exactly the same fashion from separate sets of random 
numbers. The more accurate value of the integral, as calculated-by Gauss-Laguerre 
quadrature, is also shown for comparison. Figure 2 is a similar set of estimates 
using the same sets of random numbers and the same value of 9, but for 
T = 10,OOO”K. The estimates calculated for Fig. 2 are almost four orders of 
magnitude larger than those for Fig. 1 and were performed concurrently with 
those estimates. Both figures show that all estimates have settled down to within 
5 % of the exact value by N = 600 trials. 
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The final conclusion which can be drawn from these computations is that the 
estimates made for the integral are not very sensitive to the value of 6 chosen. 
Computations have been performed with 8 assuming values of 5000”K, lO,OOO”K, 
and 15,OOO”K to determine the variation in the Monte Carlo estimates for fixed N 
and T. For these three values of 6 Fig. 3 shows plots of the relative error 

ii? 
0 

Q 
z 5x10 -2 

‘2, EXACT VALUE 

-OF 

FIG. 2. Monte Carlo estimates P,, cN) of integral (3) as a function of the number N of trials 
for a temperature Tof 10,WK and for parameter 8 = 10,OOO”K. Case 1 and Case 2 are estimates 
calculated from separate sets of random values selected for the integration variable. 

0.3or 

I *= 5000°K\ A 

10,OOO’K , 

0’ 
I I I I I I I I I I 

0 5000 10.000 

T(‘K) 

FIG. 3. Relative error X,,,(T)/Piy)(T) calculated as a function of temperature T for three 
values of the parameter 6. The relative error in each case was computed after N = 600 Monte 
Carlo trials. 
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Z&T)/P~~‘(T) after N = 600 trials over the complete temperature range. At the 
lowest temperatures (less than about 1000°K) the relative error for each 8 is 
smaller than 11 ‘A, and variation in the values of the relative error is not large. In 
contrast, at the high temperatures the relative error for i.J = 5000°K approaches 
30 %, while the other relative error values remain less than 10 %. The reason for 
the breakdown in the accuracy at high temperatures and small 6 can be explained 
as follows. The integrand in Eq. (3) is a product of pol( V) and the one-dimensional 
Maxwellian function of velocity at temperature T. For the temperatures of interest 
the maximum in pol( V), and therefore the maximum in the integrand, occurs at a 
higher value of V than the maximum in the Maxwellian function. Therefore, a 
density function with a maximum closer to the maximum of the integrand, i.e., 
one for which 8 > T, can be expected to give a better Monte Carlo estimate. 

For each value of 8 the plot of the relative error as a function of temperature 
assumes a minimum. At the temperature corresponding to this minimum the 
distribution function, for the specified value of 8, imitates best the integrand. As 
expected the smallest value of 9 yields the best relative error at the lowest tempera- 
tures while the largest value of 6 produces the best relative error at the highest 
temperatures. 

For this one-dimensional example, then, convergence of the Monte Carlo 
estimate over the entire range of values of temperature (300 < T < 10,000”K) is 
found for a single value of 8. Only one set of calculations of the quantity p&V), 
for random values of V, is required. Differently weighted sums of this set of values 
give the estimates of the integral at each of the temperatures of interest. Conver- 
gence of each estimate as a function of the number of trials is not found to be 
rapid because of the wide range of temperature over which convergence occurs. 
The technique is not sensitively dependent upon the value of the parameter 8 
chosen for the computations, provided only that 6 is large enough. 

3. MULTIDIMENSIONAL EXAMPLE 

The technique described and illustrated in the previous sections has been applied 
to calculate multidimensional integrals of interest in molecular collision theory. 
These integrals describe the thermally averaged probability for the vibrational 
excitation of a diatomic or linear triatomic molecule upon collision with an atom, 
and represent a generalization of the one-dimensional example of the preceding 
section. 

It is assumed that the vibrational motion of the molecule can be described by 
the usual normal mode representation of uncoupled, harmonic oscillators [5]. 
If, in the collision, an amount of energy dE,, is transferred to the i-th vibrational 
mode, it has been shown [4] that the probability PA, for a quantum mechanical 
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transition from the m-th vibrational level to the n-th vibrational level is approxi- 
mately 

where 
pt,(cJ = m ! n ! e-%~+“S2 lltn 3 (11) 

Ei = AE,,pb, , 

&n = i 
(-l)i qi 

j=o (n - j) ! j! (m - j) ! 
and ~1 = min(m, n). 

Here !i is Planck’s constant divided by 2rr and the wi are the natural frequencies 
for the normal modes of vibration. 

The nondimensional energy ei transferred to the i-th mode is a function of the 
initial orientation and relative velocities of the molecule-atom system. For each 
collision this energy is calculated numerically by integration of the classical 
equations of motion for the molecule-atom system. Thus 

Here, with reference to Fig. 4, VO is the initial relative velocity of the atom- 
molecule pair, b is the impact parameter, 01~ and f10 are polar angles defining the 
initial orientation of the axis of the linear molecule, andj, and ‘yO are the magnitude 
and direction of the initial angular momentum vector for the molecule. (Note 
that only one angle, y,, , is required to completely define the direction of the angular 
momentum vector, since, for a linear molecule, the angular momentum vector is 
perpendicular to the molecular axis.) 

The probability is averaged over a Maxwellian distribution at temperature T 
of relative translational velocities V,, and of angular momentaj,, . It is also averaged 
over impact parameter b and the angles 01~ , /3,, , and y,, describing the initial 
conditions. The resulting thermally averaged probability P&,(T) of a transition 
from state m to state n in the i-th mode can be written 

mn = 2 kT (27r)2 IkT ,, 
1 (“)2 l -,“+G] V,,03 dV, j”’ 2 $ f o * * 

. jl sin I% 4% ji da0 jr dy, 1,” h dh exp [ - -&$-I ~24. (12) 

Here M is the reduced mass for the molecule-atom system, I is the moment of 
inertia of the molecule about its center of mass, and b, is a cutoff impact parameter. 

The probability P:,(T) in Eq. (12) is derived for collisions of a fully three- 
dimensional character. Calculation of a trajectory and of the energy transfer for 
each three-dimensional collision is a rather time-consuming task. A simpler and 
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shorter computation arises when a collision is restricted so that the atom and the 
molecule always lie in the plane determined initially by the atom and by the 
molecular axis. Such a coplanar calculation reduces the computational time to 
evaluate PA,(T) in two ways. First, the time required to calculate the coplanar 
trajectory is much smaller than that required to calculate the trajectory for a 

FIG. 4. Orientation of the molecule and the approaching structureless particle before a 
collision. See Section 3 for definition of symbols. 

fully three-dimensional collision. Second, for a coplanar collision the angles /3 
and y are such that /3 = z-/2 and y = j72/2 throughout the collision. As a result 
the expression for the thermally-averaged probability PA,(T) in Eq. (12) reduces 
to a four-dimensional integral. The computational time reduction occurs princi- 
pally for the first reason. Consequently, most of the calculations described in this 
section will be those obtained from evaluation of Eq. (12) for the coplanar (four- 
dimensional integral) case. 

If the integrand is denoted by f(c~~ , PO , yO , b, V,, , j,,), the integral for PA,, can 
be written as 

We multiply and divide f by the probability density function g, 

g(~O,BO,yO,b, Vo,jo,@ =f($)“exp[-s] vo3(2+) 

.(isin/I,)&&exp [-&I, (14) 
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so that 

J’fn,(T) = jr dao j: 4, j;” &o j:’ db j,” dVo jr d.o [$I g. (15) 

The probability density function g is again, as in the one-dimensional example, 
a Maxwellian distribution at a “fictitious temperature” 19; the present function 
is, of course, generalized to a multi-dimensional distribution. Since the probability 
p&,(~~) for energy transfer in any particular collision is small except for the most 
energetic collisions, the collisions with large initial values of V, andj, . will contri- 
bute most to the energy transfer process. Therefore, the fictitious temperature 9 
is chosen to be near the high end of the temperature range of interest in the integral. 

We introduce the convenient scale factors V, = (k$/M)+’ and j, = (Ik19)l/~ 
together with the new integration variables v = V,,/V, , q = j,/j, , and 6 = b/b* . 
The expression for PA, becomes 

(16) 

. jm q 4 exp (- $1 I($)” ew [ - p (v” + q2) (G - i)] ~kd4\ 
0 

For the Monte Carlo estimate of this integral the probability density function 
is given by da0 , PO , y. ,6, v, q; 6). A large number N of sets of values for 01~ , 
PO , y. , 6, v, and q are selected at random from this density function. Note that 
each set of values represents initial conditions for a trajectory and that each set 
is independent of the particular value chosen for Tin the integral. Let the k-th set 
of values be denoted by c$‘, /3p’, #‘, @), 0, and qtk), and 

F(“‘(8, T; i, m, n) = ($1” exp [ - + ((v’“‘)” + (q’“‘)2) (+ - &j] &&(e;“‘), 

(17) 
where P&(c~“‘) has been evaluated for the k-th set of values. The Monte Carlo 
approximation to Pi,(T) is given by 

PA,(T) s $ 2 Flk)(6, T; i, m, n), (18) 
k=l 

while the variance for the distribution of F(“) is given by 

&) s $ il Fk’P, T; i, m, n)]” - [P$,(T)12. (19) 

Estimates of the integral in Eq. (12) over the temperature range 300°K < T < 
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8000°K were performed according to Eq. (18) for m = 0 and n = 1,2,3. The 
molecular parameters and potential constants were selected to simulate excitation 
of the bending mode of the carbon dioxide molecule upon collision with another 
carbon dioxide molecule. In this case one of the molecules is regarded as structure- 
less for the model to be applicable. Simultaneously, estimates of the variance of 
the distribution of PA, given by Eqs. (19) and (10) were calculated. The tempera- 
ture T, the parameter 9, and the number of trials are all variables in these calcula- 
tions, and for the coplanar calculations (four-dimensional integrals), each was 
varied independently to determine its effect upon the results. Limited computations 
were performed for the general case involving three-dimensional collisions (six- 
dimensional integrals), and one plot of these results is shown. 

The calculations performed for the coplanar collisions (four-dimensional 
integrals) indicate that all of the conclusions drawn from the one-dimensional 
integral example are valid also in this multi-dimensional case. For a single value 
of 8 and for a fixed number of trials, the convergence of the Monte Carlo estimate 
of the four-dimensional integral is found to be comparable to the convergence 
obtained for the one-dimensional integral over a similar temperature range. The 
difference in the molecular parameters and the potential constants between the 

TABLE II 

Comparison after N = 180 trials of the values of the integral P,,, l@‘)(T) in Eq. (12) for two values 
of the parameter 0 (for C02-CO2 collision model). 

B=2000”K $=5000”K 

T(“W 

300 4.59 x 10-s 0.330 
500 4.96 x 1O-4 0.166 
700” 1.78 x 1O-3 0.137 

1000 5.90 x 10-Z 0.106 
3000 6.27 x 1O-2 0.183 
4ooo” 6.64 x 1O-2 0.208 
5000 6.02 x 1O-2 0.225 
6000 5.14 x 10-Z 0.236 
7000 4.28 x 1O-2 0.245 
8000 3.55 x 10-Z 0.251 

pW 
01 Rel. error PUN) 01 Rel. error 

7.85 x lo-” 0.467 
3.02 x lo-” 0.354 
1.70 x 10-s 0.299 
6.55 x 1O-3 0.214 
8.09 x 1O-2 0.082 
1.15 x 10-l 0.068 
1.39 x 10-l 0.068 
1.53 x 10-l 0.076 
1.58 x 10-l 0.088 
1.57 x 10-l 0.100 

one-dimensional and the four-dimensional integrals examined here does not allow 
direct comparison of the estimates of these integrals. However, the relative error 
calculated for each estimate does provide a basis for comparison. For the one- 
dimensional example of Section 2 with 6 = 5000°K and after N = 180 trials, the 
relative error has a minimum value of 0.088 near T = 1000°C. In addition, the 
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relative error remains less than 0.16 for the temperature range 300°C < T :< 3000”. 
In the present example the relative error for 8 = 5000” after N = 180 trials is listed 
together with other results in Table II. Here the relative error achieves a minimum 
of 0.068 between T = 4000°C and T = 5000°C. In the temperature range 
3000°C < T < 8OOO’C, the relative error remains less than 0.10. 

Examination of the relative errors determined for both values of 8 given in 
Table II shows that, as in the one-dimensional case, the relative error for each 9 
has a minimum as a function of T: for small values of 7 and for large values, 
the relative error increases rapidly. The rate at which the relative error increases 
for large and small T appears to be more rapid than in the one-dimensional case. 
Consequently, it is concluded that, for given 8, the range of temperatures over 
which the scheme calculates the integral accurately in a multidimensional case 
may be somewhat reduced from that in the one-dimensional case. 

As in the one-dimensional example the convergence of the Monte Carlo estimates 

0 2000 4000 6000 8000 
1 OK 

FIG. 5. Monte Carlo coplanar estimates P,, I@‘) of integral (12) after N = 180 trials as functions 
of temperature T for two values of the parameter 8. 
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are not found to be sensitively dependent upon the value of 8 used. This result is 
illustrated in Table II where the values of PiiN) and the relative error has been 
tabulated for two values of 6, 2000°K and 5000”K, after N = 180 trials. The 
agreement between the values of PiiN) calculated for 6 = 2000°K and those 
calculated for 6 = 5000°K is quite good for temperatures in the range 
500°K < T < 3000°K. For temperatures greater than 3000°K the agreement 
becomes poorer. Agreement can be expected to be best in the region where the 
relative error for both values of 9 is small. 

The values of PiiN) vs T for 8 = 2000°K and for 8 = 5000°K listed in Table II 
have been plotted in Fig. 5 to more graphically illustrate the sensitivity of results 
to choice of 8. Where the relative error is small, the values of PiiN) for each 6 are 
quite comparable. The choice of 6 is important for determining the range of 
temperature over which the computation is accurate, but its choice does not 
sensitively affect the estimate of P,,i lCN) determined for a specific temperature within 
this range. 

Figure 5 also illustrates an important check which the technique allows. If the 
multidimensional integral is desired for a larger range of temperatures than a 
single value of 6 affords, two or more values of 9 are required. Generally, there 
will then exist a subrange of temperatures common to two of the values of 8 over 

8.0 
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‘0 4.0 

0. : 

0 

2.0 

T = 700’K 

73 

t 5000 

2000 

u 

0”’ ” 1 ’ 1 ’ 1 ’ 1 ’ 1 I I 1 
0 20 40 60 80 100, 120 140 160 180 
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FIG. 6. Monte Carlo coplanar estimates P,,, ‘cN) of integral (12) as functions of the number of 
trials N for T = 700” and for two values of the parameter 19. Error bars indicate a standard 
deviation for each estimate. 

which the estimates calculated for the integral should coincide. If these estimates 
coincide to within the accuracy expected from the computed relative errors, the 
estimates can be adjudged reliable. If, however, the results do not coincide to the 
expected accuracy, then an error has been made in the computation. 
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Figure 6 shows plots of PiiN’ vs N for T = 700°K and for two values of 8, 
2000°K and 5000°K. Error bars at various values of N indicate one standard 
deviation above and below the calculated estimate. Once again, as in the one- 
dimensional example, the convergence for an individual value of T and a value 
of 9 is not rapid. However, for a fixed 8, PilN’ converges for a substantial range 
of temperatures. The number of trials for B = 5000°K was carried out to 
N = 490 trials to examine the convergence for a large number of trials in the 
multidimensional case. The value of PiiN) after 490 trials was found to be 

100 

-6 
10 

1 o-’ 
0 2000 4000 6000 8000 

TEMPERATURE (OK) 

FIG. 7. Monte Carlo estimates P,,n lW) of integral (12) as functions of temperature T for three- 
dimensional collisions (six-dimensional integrals). 

1.84 x 1O-3 and the relative error was calculated to be 0.160. All subsequent 
coplanar calculations were performed with only 180 trials, however, since the 
slow rate of convergence does not justify a large number of trials. 

Figure 7 illustrates the results determined from calculating an approximation 
to Eq. (12) for three-dimensional collisions. As mentioned above, these calculations 
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require more computer time primarily because of the longer time necessary to 
calculate each trajectory. Only N = 100 trajectories were calculated for this case. 
Comparison of these calculations with those performed for the coplanar case 
showed that the numerical results were not substantially different. 

The technique described in the Introduction and illustrated by computation 
of a one-dimensional integral in Section 2 has been applied to multidimensional 
integrals. The integrals are four- and six-dimensional integrals arising in the 
description of vibrational excitation processes in linear molecules. The results 
indicate that the conclusions drawn from the one-dimensional example are valid 
in the multi-dimensional case. First, for one set of calculations of the integrand 
(P$,(Q)), the thermally averaged integral (Pi,(T)) can be determined over a large 
temperature range. (The range of temperatures over which the estimate of the 
integral converges satisfactorily may be reduced over that found in the one- 
dimensional example, however.) Second, the estimate of the integral at any 
particular temperature is not sensitively dependent upon the value of 6 chosen. 
Finally, as in the one-dimensional example, the convergence of the estimate of 
the integral for given values of 6 and T as a function of the number of trials N is 
not rapid because of the wide range of temperatures over which this convergence 
is obtained. 
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